Royce’ Methodology

Software Engineering I
Lecture 20

Bernd Bruegge
Applied Software Engineering
Technische Universitaet Muenchen

Royce’s Methodology

Demonstration-based approach
« Identify performance issues and assess intermediate artifacts.
Architecture-first approach

. Focus on critical use cases, architecture decisions, and life-
cycle Fans before comm|tt|ng resources. Address architecture
and plan together

Iterative life-cycle process

« Each iteration should focus on a specific risk and move the
requirements, architecture, and plan in a balanced manner

Component-based development

 Minimize human generated lines of code. Use commercial
components.

Change management environment

« Automate processes to deal with changes introduced by
iterations.

Round-trip engineering

« Couple models and source code, decreasing cost of change
Objective quality control

« Use metrics and quality indicators to assess progress
Visual modeling languages.
© 206 BeldB@eiiSUAl languages-tersupposriwmodeling and documddiaticn.

How much Planning? (Royce)

*The project plan is developed iteratively like the software
 The plan is refined as the stakeholders increase their
knowledge in the application and solution domain

e Planning errors are treated like software defects
« Early fixing means less impact on project success.
« WBS is organized around software life cycle activities

 The first level elements in the WBS represent workflows (i.e.,
management, requirements, design,...).

« The second level elements represent phases (i.e., inception,
elaboration, construction, and transition).

 The third level elements correspond to artifacts produced
during the phases.

e Estimation:
« Compute the initial estimate with a model
« Refine it with the project manager, developers, and testers

» After each iteration, revise plan and estimate to reflect the
performance of the project and to address planning errors.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 3

How much Reuse? (Royce)

*Buy versus build decisions are treated as risks that should
be confronted early in the life cycle (e.g., in the first
iterations of the elaboration phase).

« When components are reused in more than one project, the
return on investment can be further increased.

« Key priniciple: Minimize the amount of human-generated
source code
 Reuse commercial components
e use code generation tools
e Use high-level visual and programming languages.
*Reuse is treated as a return on investment decision which
decreases development time.

« Mature components and tools also reduce time to repair
defects

« Immature components and tools increase quality problems
drastically to off-set any economic benefit.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 4

How much Modeling? (Royce)

*Modeling artifacts based on the activities of the Unified Process
¢ Management Set:
» Artifacts associated with planning and monitoring activities

 Ad hoc notations to capture the “contracts” among project
participants and other stakeholders

* Problem statement, SPMP, SCMP and status descriptions
 Requirements set

e Visionary scenarios, prototypes for user interfaces,
requirements analysis model.

 Design set
o Software architecture and interface specifications
 Implementation set
e Source code, components, executables
 Deployment set
 Deliverables negotiated between project manager and client
« Executable, user manual and administrator manual

e Test artifacts are part of each of the above sets.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 5

Artifact Road Map (Royce)

The diagram of all artifacts sets generated over the phases of a software system

Inception Elaboration Construction Transition

| | | | | | | |

Management Set

1. Problem Statement %
2. WBS

A%

3. SPMP
4. 5CMP %
A

A A

5. Project Agreement
6. Test plan

Requirements Set

1. RAD A A

Design Set

1.SDD A A A ﬁ

e P >

2.0DD
Implementation Set

1. Source code
2. Test cases A A A
Deployment Set

1. User Manual A
2. Administrator Manual

-
> >
> >

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 6

How much Process? (Royce)

(Most important factor in determining the process)

Smaller Projects (1-10 participants)
 Require much less management overhead

 Performance depends on technical skills of participant and on tools
 Focus on technical artifacts, few milestones, no formal processes
Larger Projects (more than 10 participants)

« Management skills of team leaders becomes primary performance
bottleneck

 Well-defined milestones, focus on change management artifacts

Cooperating set of stakeholders: flexible plan, informal agreements

Contention among stakeholders: formal agreements, well-defined
processes

Rigor of the process definition impacted by rigor of contract
Organizations with mature processes are easier to manage

Demonstrate feasibility of the architecture before full-scale
commitment

Domain expertise shorten the earlier phases of the life cycle.

How much Control? (Royce)

3 management metrics and 4 quality metrics:

e Management metrics:

. . How many tasks have been completed compared to
the plan?

. . How many resources have been consumed compared
to the budget?

. . How many participants leave the project
prematurely and how many new participants are added?

e Quality metrics:

. . How many change requests are issued over time?

. . How much source code is reworked per change?

. . How much effort is needed to implement a
change?

° . How many defects are

discovered per hours of testing?

Summary of Royce’s Methodology

Issues Methods
Planning | Evolutionary WBS
Initial model-based estimation of cost and schedule
(COCOMO II)
[teration planning, including all stakeholders
Modeling | Critical use cases and driving requirements first
Architecture first, UML, Round-trip engineering
Reuse | Buy vs. build decisions during elaboration.
Focus on mature components
Process | Scale, Stakeholder cohesion, Process flexibility,
Process maturity, Architectural risk, Domain
Control | Management indicators (work, cost, team dynamics)
Quality indicators (change traffic, breakage, rework,
MTBF)
© 2006 Bernd Bruegge Software Engineering WS 2006/2007 9

References

© 2006 Bernd Bruegge

Software Engineering WS 2006/2007

10

Summary

© 2006 Bernd Bruegge

Software Engineering WS 2006/2007

11

Backup and Additional Slides

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

